Benha University		1 st semester Exam	
Faculty of Engineering- Shoubra		Date: 30-12-2013	
Electrical Engineering Department		ECE111: Electronic Engineering fundamentals	
First Year communications.	BEAUA UNIVERSITY	Duration : 3 hours	

- Answer all the following questions
- Illustrate your answers with sketches when necessary.

The exam consists of two pages.

No. of questions: 5

- Total Marks: 90 Marks
- Examiners: Dr. Ehsan Abaas Dr. Abdallah Hammad

K=1.38×10 ⁻²³ J/K	h=6.64×10 ⁻³⁴ J.s	q=1.6×10 ⁻¹⁹ C	m₀=9.1×10 ⁻³¹ Kg	ϵ_{o} =8.85x10 ⁻¹⁴ F/cm
[Si] m _e =1.08 m _o	[Si] m _h =0.81 m _o	[Si] E _g =1.12 eV	[Si] n _i =1.5x10 ¹⁰ cm ⁻³	[Si] ε _{rs} = 11.7

Question 1 (18 marks)

- * Use the given data in the table for the pure Silicon
- a- (5 marks) <u>Calculate</u> the effective density of states for electrons and holes in silicon at T= 300 K.
- b- (5 marks) Calculate the intrinsic carrier concentration at T=300 K (based on your results in part a)
- c- (4 marks) Calculate the position of the intrinsic Fermi level relative to the mid energy gap.
- d- (4 marks) Consider, the silicon is doped with donors, so that the Fermi energy level is shifted to be
 0.2 eV below the edge of the conduction band, <u>Calculate</u> the thermal equilibrium electron and hole concentration.

Question 2 (18 marks)

- a- (10 marks) A semiconductor material has electron and hole mobilities μ_n and μ_p respectively. When the conductivity is considered as a function of the hole concentration p_o :
 - i- Show that the corresponding hole concentration for the minimum conductivity is given by $p_0 = n_i \sqrt{\mu_n / \mu_n}$
 - ii- <u>Show that</u> the minimum value of conductivity σ_{min} can be written as $\sigma_{min} = \frac{2\sigma_i \sqrt{\mu_n \mu_p}}{(\mu_n + \mu_p)}$ where

 σ_i is the intrinsic semiconductor conductivity.

b- (8 marks) The electron concentration in a semiconductor is given by $n = 10^{16}(1 - x/L) \text{ cm}^{-3}$ for $0 \le x \le L$ where L = 10 µm. The electron mobility is $\mu_n = 1000 \text{ cm}^2/\text{V-s}$. An electric field is applied such that the total electron current density is a constant ($J_n = -80 \text{ A/cm}^2$) over the given range of x. Determine and plot the required electric field as function of (x)

Question 3 (18 marks)

- a- (8 marks) Consider a p type semiconductor that is exposed to the light for a long time (t < 0). Suddenly (At t = 0) the light source is removed. Derive and plot the excess of minority electrons as a function of time. (Assume that $\Delta n \ll p_a$)
- b- (10 marks) An excess electron concentration of 10^{12} m^{-3} is maintained at one side of a bar of ptype semiconductor. The excess electron distribution along the bar is given by the solution of the diffusion equation. <u>Calculate</u> the diffusion current density at the side where the injection is maintained. Assume that the temperature is 300° K, the minority carriers mobility = 0.1 m^2 /V.s and the minority carrier lifetime = 0.01μ s.

Question 4 (18 marks)

- a- (4 marks) <u>Define</u> the barrier potential of the un-biased pn junction.
- b- (10 marks) <u>Derive and draw</u> the relation between the applied voltage and the current in the *pn* junction, then discuss diode approximations.
- c- (4marks) Draw the energy band diagram for the pn junction under
 - i- Thermal equilibrium
 - ii- Forward bias
 - iii-Reverse bias

Question 5 (18 marks)

Consider a pn junction, both n and p sides are cube of side length 5 μ m.

The properties of the *p* side at T=300 K are: $N_A = 10^{14} \text{ cm}^{-3}$, $\tau_n = 20 \ \mu\text{S}$, $\mu_p = 400 \ \text{cm}^2/\text{V.S}$ and $\mu_n = 1000 \ \text{cm}^2/\text{V.S}$. The properties of the *n* side at T=300 K are: $N_D = 10^{18} \ \text{cm}^{-3}$, $\tau_p = 0.2 \ \mu\text{S}$, $\mu_p = 300 \ \text{cm}^2/\text{V.S}$ and $\mu_n = 800 \ \text{cm}^2/\text{V.S}$.

- a- (3 marks) For the pn junction under thermal equilibrium, sketch the:
 - i- Charge density
 - ii- The electric field
 - iii-The electric potential
- b- (8 marks) For the pn junction under thermal equilibrium <u>Calculate</u>:
 - i- The built in potential.
 - ii- The depletion region width W.
 - iii-The junction capacitance.
 - iv-The peak electric field
- c- (7 marks) Calculate the current passing through the junction when:
 - i- The junction is forward biased by 0.4 V.
 - ii- The junction is reverse biased by 2V.

Good Luck